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LETI'ER TO THE EDITOR 

Polar decomposition of the twisted deRham complex for Cq 
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Abstract. A twisted exterior algebra for the complex quantum plane C, in ihe polar 
wordinates is wnsidered. 

Recently a quantum deformation Cq of the complex plane C was introduced [ I ,  21 
and intensively investigated [3,4]. This quantum algebra is obtained from the Manin's 
plane [SI by means of the following definition of the star * antilinear anti-involution 

( i j  

where x and y are generators of the quantum plane. For completeness let as recall the 
definition of the Manin's plane [6]: a quantum plane is a quotient algebra M :  = 
C(x, y)/O(xy - wx) where C(x, y )  is an associative unital algebra over C freely generated 
by x and y,  while U is the two-sided ideal in C spanned by monomials containing 
expressions 

[1,21: 
..* ~ .. y =.I 

..* ~ .. .v = y  

( x y  - W d k  with k > 0 and q E C -{O}. 

In the following we will denote x = 5; y = <*, so in terms of 6 and c*, the reordering 
rule has the form 

5<* = q r < .  (2) 
Now, according to the general classification of the differential calculi related to 

the quantum plane [2], the deRham complex associated with C, is parameter dependent 
and is generated by <, 5'' and the differentials d5; dl* satisfying: 

Here d is linear, nilpotent and satisfies the graded Leibnitz rule, while the parameter 
p belongs to W,. Moreover we can complete the rules (2) and (3) by derivatives a, 
and d,. defined via 

df( t , l*)=d5aJ+dl* Jc.5 (4) 
The reordering rules for 8, and J,* are listed in [2,3]. 

i.wisied 
deRham algebra [3,4]. In particular there exists a need to introduce an analogue of 
the polar coordinates into this algebra. 
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To do this let us consider the following decomposition 

[ = m  ( 5 )  

r * = r  u*u = uu* = I. ( 6 )  

where r is Hermitian while U is unitary, i.e. 

The reordering rule for r and U reads 

ur = q’/’m. (7) 
Notice that r2 = [l* and equation (7) is in agreement with (2). 

The derivation of the reordering rules for differentials (corresponding to equations 
(3)) is not so easy and demands some technical acrobatics. The final result is the 
following: 

u du du u 

U* du =p-’/’du U* 

U d r =  (pq)’/’dru 
U* dr = (pq)-’” dr u* 

r du = q-’/’du r+(p’”- 1) dru  

du r =  (p-’/’-l)u dr+q’”r du 

and 
r dr = [ (1 + p 3 / ’ ) / (  p +p’12)]  dr r + (1 -p- ’ / ’ )  du u*r’ 
dr r =[(l+p3/2)/(p+p’/2)]r dr+( l  -p’/’)r‘u* du. (86) 

Notice that equations ( 8 a )  have the Bethe Ansafzform [2] while the equations (86) 
are nonlinear in generators with respect to the r. The remaining relations for the 2-forms 
read 

(du)‘= 0 

du d r =  - ( p q ) ’ / ’ d r  du. 
(dr)’=(l-p-’/’)dr duu*r (9) 

Now, the polar representation of the Cq deRham complex is defined as a C,-module 

The above differential calculus can be immediately completed by the derivatives 
generated by r, U, dr and du. 

J, and J. via the definition analogous to (4). 
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